
CPS122 Lecture: Class Diagrams in UML

Last revised January 29, 2019
Objectives:

1. To introduce UML Class Diagrams
2. To explain the association relationship between objects, adornments possible on

such relationships, and ways of using these relationships
3. To introduce aggregation and composition associations
4. To review the inheritance relationship between classes, and consider how to use

inheritance in design
5. To introduce the realization relationship between a class and an interface
6. To introduce the dependency relationship between classes

 Materials:

1. Handout of class diagram for ATM Example
2. Handout of class/object diagram symbols
3. Projectable of simple class diagram showing pets and masters
4. Navigability and Multiplicity Activity
5. Handout for major league baseball problem and skeleton for diagram
6. Projectable solutions to MLB problem and corresponding code (use .pdf. but do

not do full screen)
7. Handout of college class diagram problem
8. Exercises dealing with choice of collections to correspond to UML

I. Introduction

A.An earlier class dealt with initial identification of the key classes comprising
a system - an analysis task. At this point, we begin to construct a class
diagram, which continues to be refined as system development proceeds.

1. The point of constructing a class diagram is that it forces us to think
about certain key issues, and then to represent our thinking in a
pictorial way that guides further design.

2. I will demonstrate using astah to create class diagrams - but you can
use another tool (or hand drawing) if you prefer.

�1

B. First, though, a preliminary note. UML actually has two similar kinds
of diagrams: class diagrams, in which the boxes stand for classes, and
object diagrams, in which the boxes stand for individual objects.

1. We will see some examples of object diagrams later.

2. For now, in the diagrams we will be working with, the boxes stand
for classes.

3. There are a couple of differences in the way the diagrams are drawn

that serve to make this distinction clear. We will deal with these later

C. In the spirit of “seamless development” that characterizes OO, the
initial development of a class diagram is an analysis task, which is
refined as part of design.

1. Quick check question a  
 

I prefer to use a slightly different way to categorize these

a) Boundary classes whose objects serve as means by which actors
interact with the system - i.e. conceptually they sit on the
boundary drawn during use case analysis.

(1)These may include one or more GUI components

(2)These may include interfaces to other systems via a network

b) Controller classes whose objects are responsible for controlling
the operation of the system. Typically each use case will be
assigned to a controller object - though one controller may be
responsible for multiple use cases.  
 

For today, though, we will focus on the classes that are typically
discovered early in the process.  
 

The classes we are focusing on now are often called entity
classes because they represent concrete or abstract things.

�2

2. The book suggests two general approaches to discovering the
classes that initially belong in the class diagram.

a) One can consider what objects are involved in realizing a given
use case.  
 

Quick check question b  
 

When all the objects appearing in each collaboration are
combined, the result will be an overall class diagram for the
system. (Note: there will typically be objects that appear in
more than one collaboration)

b) One can seek to develop a model of the general domain

c) Either approach should result in the same overall model

D.The book suggests several broad categories of objects to look for in
initially developing a class diagram  
 

Quick-Check question d [we'll do c in a moment]

1. People

2. Organizations

3. Physical things

4. Conceptual things  
 
Examples from Wheels  
 

ASK  
 
Customers  
Bicycles  
The hiring of a bicycle

�3

E. However, not everything identified as a possible object should actually
be considered as such when developing a class diagram. The book
gives a host of reasons for rejecting potential objects.  
 
Quick check question e  

F. Ultimately, the class diagram will contain quite a bit of information

1. The classes themselves

2. The attributes of each class

3. The operations of each class  

4. Relationships between classes

G.The book suggests an overall process for developing a class diagram  
 
Quick check question c  
 
The chapter in the book focused on the first four of these. For now, we
will limit our focus to just two: identifying classes, and the
relationships between classes.

H.Complete quick check questions before moving on

1. Do questions f-h

2. Collect questions

�4

II.More About Relationships

A.At the outset, we note that there are two different sorts of relationship,
that we handle similarly but need to keep distinct in our thinking.

1. There are relationships between individual objects. Such a
relationship describes how a particular object of one class relates to
a particular object of another class.

a) Among humans, the relationship known as marriage is such a
relationship. It relates one individual to another specific individual.
You may know many married people, but each has a different spouse.

b) In the OO world, the link along which a message is sent from an
object to one of its collaborators is such a relationship - a
particular sender sends a message to a particular receiver. (That
is, the Collaborators column of a CRC card is documenting
associations.)

c) In this case, then, each individual object participates in the
relationship (or doesn’t participate in the relationship, as the
case may be) with its own particular partner or partners.

d) Where things get a bit confusing is that when we identify an
individual relationship between objects, we are also identifying
a relationship between the corresponding classes. The fact that
an object of class Book is related to one or more objects of class
Author implies that there is a relationship between the classes
Book and Author such that a member of the one class can
participate in this relationship with a member of the other class.

2. There are relationships between classes. Such a relationship
describes how one whole class of objects is related to another class.

a) Among humans, the fact that all CS majors are also students is
such a relationship.

�5

b) In the OO world, generalization, or inheritance, is such a
relationship.

c) In the case of a class relationship, all the objects that belong to a
given class participate in the relationship in the same way.

3. In drawing a class diagram, we can depict all kinds of relationships
- even those that are actually relationships between individual
objects. (Indeed, the class diagram is the more frequently used
type of diagram in UML in general.).

B. In this series of lectures, we will discuss four kinds of relationships (three of
which are exemplified in following diagram for the ATM system).  
 
HANDOUT ATM Class diagram  

1. Association - a relationship between objects.  
 

EXAMPLES FROM CLASS DIAGRAM  

a) In a class diagram, this kind of relationship is represented by a
solid line, possibly with a plain arrow head on one end. There
can be multiplicities at both ends.  
 

b) There are two special kinds of associations, which we have
already looked at briefly, and will say more about later

(1)Aggregation - an association representing a whole-part
relationship

(2)Composition - a strong form of aggregation

2. Generalization (inheritance) - a relationship between classes. In a UML
diagram, this is represented by a solid line with a triangle on one end.  
 

EXAMPLES FROM DIAGRAM  
 

These two are the most common - something of the difference can be

�6

illustrated by the following simple class diagram:  
 

PROJECT 
 

�  

3. Dependency - a relationship between classes. In a UML diagram,
this is represented by a dashed line with an arrowhead on one end.  
 

EXAMPLES FROM DIAGRAM

4. Realization - a relationship between a class and an interface. In a
UML diagram, this is represented by a dashed line with a triangle
on one end. (Note that the symbol is similar to that for
generalization, because realization is similar to inheritance.)  
 

NO EXAMPLES IN CLASS DIAGRAM - WILL DISCUSS BELOW

C. Everything we will discuss in this series of lectures is summarized in a
handout.  
 

HANDOUT Diagram Symbols

�7

III.Decorations on Associations

A.In the simplest case, an association may simply be drawn as line. But
often, the line has one or more decorations or adornments that provide
further information about the association. [Note: for clarity, as we
talk about each type of decoration we will omit others that might
otherwise belong in the diagram]

1. Navigability (directionality):

a) Ordinarily, associations are conceived of as being bidirectional -
e.g. in the diagram showing the association between a Book and
its Author(s), we probably intend for it to be possible to go from
a Book object to its Author object(s), and likewise to go from an
Author object to the Book(s) it is the author of.

b) Sometimes, though, an association is conceptually unidirectional -
e.g. if were to try to depict the relationship between a Server system
and a Client system that uses it, we might draw it this way:  
 

�  
 

The arrow says that the Client must know about the Server, but the
Server does not need to know about the Client (except briefly, during
the time it is responding to a message received from the Client.)

c) Why would we want to identify an association as being
unidirectional where this is appropriate is? The presence of an
association in the class diagram implies that the implementation

Server

Client

�8

will need to maintain information about this association.
Keeping information about a bidirectional association means
that both objects will have to maintain information about the
association. If this is not necessary, maintaining the association
in only one direction will simplify the implementation.

d) If you are using astah to produce class diagrams, you will notice that
it only there are two tools for creating associations - one of which
allows you to specify navigability, while the other does not.  
 
DEMO with astah

2. Multiplicity: Some associations are conceptually one to one - one
object of a given type relates to one object of another type. Others
allow one object of a given type to be related to many objects of
another type. Here are some different situations that often arise,
and the corresponding UML representation:

a) One-to-one. Example: relationship between a country and its
capital city.  
 
 

�  

b) One-to-many: Example: the relationship between a book and the
individual chapters that are part of it.  
 
 

�  

Country City
1 1

Book Chapter
1 *

�9

c) Many-to-many: Example: students and courses  
 
 

�  

d) Often, the multiplicities will be expressed as ranges, rather than
as simple values

(1)Example: a person has exactly two birth parents. A parent
has at least one child (else he or she is not a parent!), but can
have any number:  
 

�

(2)Example: the annual volleyball competition between the
Math and CS wings of our department involves up to 5
games. In each game, at least 12 but no more than 30
students can participate.  
 

�  
 

(This one’s a bit contrived to illustrate a point, I admit :-).  

(3)The symbol * we have previously used means “0 or more” -
hence it is equivalent to 0..*

e) If the lower limit on the multiplicity of a certain relationship is
0, we say that the relationship is optional. If the lower limit is
greater than 0, we say that the relationship is mandatory. Note
that the same relationship may be optional in one direction, and
mandatory in the other.

Course Student
* *

Parent Child
2 1..*

Game Player
0..5 12..30

�10

(1)Example: the relationship between a customer and the orders
he/she has placed with a company. Assuming a person can
register as a customer before placing an order, we have the
following scenario:  
 

�  
 
The relationship from an order to a customer is mandatory -
every order must be associated with a customer. The
relationship from customers to orders is optional - a
customer does not need to have any orders.

(2)It’s certainly possible to have a relationship that’s optional both
ways - e.g. the relationship between a library patron and books. he/
she currently has checked out. A patron does not have to have any
books checked out at a given time, nor does any particular book
have to be checked out at a given time. (Note that while we allow a
patron to have any number of books out, a book can only be
checked out to one patron at a time.)  
 

�  

(3)Recall that the notation “*” is short for “0..*”, and so stands
for a relationship that is inherently optional. If the
relationship is mandatory, but of unlimited multiplicity, we
must use the form “1..*”.

(4)Also note that some writers use the notation “n” instead of *
in a range - so * (= 0..*) is written as “0..n” and 1..* is
written as “1..n”.  
 
Do Navigability and Multiplicity Activity

Customer Order
1 *

Patron Book
0..1 *

�11

3. Name: Often, the meaning of the association is implicit in the
classes that are related, but sometimes an association will be given
a name to make its meaning explicit.

a) EXAMPLE:  
 

�  
 

(Note the arrow on the name, which indicates how it is to be
read: “a student is enrolled in a course”. It has nothing to do
with navigability of the association itself, which is bidirectional
in this case.)

b) Giving a name to an association is especially important in cases
where there are two different relationships between the same
pair of classes.  
 

EXAMPLE 
 

�  
 

(Note that a student must have at least one major, but can have
zero or more minors)  

c) Note that association names typically begin with an upper-case letter,
denoting that they are “class like”. In fact, in some cases an
association may need to be represented by an Association Class. This
is particularly true when there are one or more attributes that are
attributes of the association itself, rather than of the participating
object.  
 

Example calling for an association class - the association between a
student and a course, which has a grade attribute that is a property of
the association - not of the student (who has individual grades for each
course) or of the course (since there are individual grades for each
student.)  

Course Student* *
EnrolledIn

Department Student
MajorsIn

MinorsIn

*

*

1..*

*

�12

�  
 

(Note the use of the three sets of lines in the box representing the
association class, to make it crystal clear that this is a class.)  
 

(Recall the quick check question about a class like Hire)  

4. Qualified Association: Sometimes, a given object can be associated
with many objects of some other class, but there is some qualifier
such that, for any given value of the qualifier, the object is
associated with at most one other object.  
 

EXAMPLE:  
 

A college is associated with many students; but for any given
student id, there is at most one associated student (or possibly
none). We say that the association between the college and
students is a qualified association, with student id as the qualifier.
This can be depicted as follows:  
 

�  
 
(Note how the effect of the qualification is to reduce the
multiplicity from 1 : n to 1 : 0..1 - for any given id value, there is at
most one matching student)  

5. Role: Often, the specific roles played by the two objects in a
relationship is implicit in the classes to which they belong; but
sometimes the roles are named explicitly: This is especially
necessary in cases where an association connects objects of the
same class to each other.  

Course Student* *

EnrolledIn

grade: Grade

Student
id

0..11College

�13

 

EXAMPLE:  
 

�  
 

Note: Care must be used in drawing a diagram to distinguish
between the name of an association and role names. The latter
should be drawn near the end of the association line; the former far
enough from the ends to be clear that it is not a role.

6. Aggregation/Composition: Sometimes, an association is stronger
than an ordinary association, in that one of the objects can be
thought of as being part of the other - i.e. the relationship is one
between a whole and its constituent parts. We call such an
association aggregation.

a) Aggregation is appropriate when we can meaningfully use the
phrase “is a part of” to describe the relationship between the
part and the whole, or “has a” to describe the relationship
between the whole and the part.  
 

EXAMPLES:

(1)In the ATM system, the CardReader, CustomerConsole, etc.
objects are parts of the ATM object. This is a stronger
connection than most of the examples of associations we
have considered thus far.

(2)The relationship between a course and its students might also
be thought of as an aggregation, though this is perhaps a bit
more debatable. (Perhaps most appropriate in a situation
were we are modeling student registrations in a course.)

Employee

supervisor supervisee
1 *

Supervises

�14

b) Aggregation is denoted in a UML diagram by putting a diamond
on the “whole” part of the relation.

c) Aggregation actually comes in two forms: simple aggregation,
and a stronger form, called composition.

(1)Composition has the additional characteristic that the “part”
has no existence independent of the “whole”. This leads to
two additional characteristics:

(a)Each “part” can belong to only one whole.

(b)The “whole” is responsible for creating and destroying
the “parts”. Thus, the “parts” come into existence when
the “whole” comes into existence; and if the “whole” is
destroyed, the “parts” are destroyed too.

(c)Composition is denoted by using a filled-in diamond;
whereas simple aggregation uses a hollow diamond.

(d)Of the two examples we have considered:

i) The relationship between the ATM and its component parts is
composition. One cannot imagine a component like a
CardReader having an independent existence apart from an
ATM (at least as far as the software is concerned), nor can a
CardReader belong to two different ATM’s.

ii) On the other hand, the relationship between courses and
students is simple aggregation: students exist apart from
their courses, and a given student can be - and typically is
- a part of more than one course as the same time.

d) In the case of composition, there is an alternative representation
possible in UML. That is to put the box representing the “part”
class inside the box representing the “whole” class.  
 
 

EXAMPLE: Consider the relationship between chapters of a

�15

book and the book itself. Clearly, each chapter is a part of one
and only one book, and its existence is directly tied to the book
of which it is a part. Thus, the association between a book and
its chapters is a composition. Either of the following UML
representations can be used:  
 

�  
 

The latter representation might be particularly appropriate if the
Chapter objects are accessible to the outside world only by
going through a Book object - i.e. if they don’t enter into any
relationships with outside objects on their own.  

B. Associations (including aggregation and composition) are used for
three general purposes:

1. We have already seen that associations can be used to represent a
situation in which an object of one class uses the services of an
object of another object, or they mutually use each others services -
i.e. one object sends messages to the other, or they send messages
back and forth. (In the former case, the navigability can be
monodirectional; in the latter case it must be bidirectional.)

2. We have also already seen that associations can be used to represent
aggregation or composition - where objects of one class are wholes that
are composed of objects of the other class as parts. In this case, a uses
relationship is implicitly present - the whole makes use of its parts to do
its job, and the parts may also need to make use of the whole.

Book

Chapter

*

1 Book

Chapteror

�16

3. As a third possibility, associations can also be used to represent a situation
in which objects are related, even though they don’t exchange messages.
This typically happens when at least one of the objects is basically used to
store information - e.g. in the AddressBook problem we did in CS112,
this is the relationship between the AddressBook object and the various
Person objects it stores. (The AddressBook doesn’t directly send
messages to Persons, though it can be used to retrieve a Person that some
other object can then send a message to.)  
 

(Some writers call this a weak relationship. This is not a standard UML
term, however.)

C. ON HANDOUT: Discuss the various associations in the ATM example
class diagram.  
 

Note that the relationship between the ATM and its component parts could
have been expressed by using the “box within box” representation.

D.Extended Example:  
 
Do Major League Baseball example in groups of 4. At each step, let
groups work on then combine results and put on board.

1. Class identification - what classes are needed?

2. Pass out skeleton and fill in associations, then discuss solutions

a) What associations are needed

b) Where are aggregation or composition needed?

c) Rationale for choice between aggregation & composition in each case.

3. Project and discuss resultant code

�17

IV.Generalization

A.We saw earlier that there are two different sorts of relationship, that we
handle similarly but need to keep distinct in our thinking.

1. There are relationships between individual objects. Such a
relationship describes how a particular object of one class relates to
a particular object of another class.

2. There are relationships between classes. Such a relationship
describes how one whole class of objects is related to another class.

B. We have been studying associations, which are relationships between
objects. We now turn to the study of relationships between classes, of
which UML class diagrams recognize three.

C. Probably the most prominent sort of relationship between classes is
inheritance, which UML calls “Generalization”.

1. Generalization relationships are denoted in UML by using a solid
line with a triangle on the base class end.  
 

NOTE IN HANDOUT

2. Actually, as noted in the book, inheritance can arise in two closely
related ways:

a) Generalization: a base class is created that embodies the
common characteristics of a number of similar subclasses.  
We may discover an opportunity for generalization during
design when we notice that two or more classes have a number
of characteristics in common, which can be put into a common
base class so that they don’t have to be duplicated in each class.  
 

EXAMPLE: Suppose we are developing a system for
maintaining course registration information, and create classes
“Student” and “Professor”. As we develop these classes, we
realize they have a lot in common (name, address, phone

�18

number, date of birth, etc.) and so create a generalized class
Person that each inherits from.

b) Specialization: a class is created that is similar to its base class,
but with certain special characteristics.  
 

We may discover an opportunity for specialization during
design when we notice that a class we need to create is very
similar to an existing class, with a few variations. Rather than
starting from class, we reuse the existing class by inheriting
from it and only implementing the things which are different.  
 

EXAMPLE: A Bank might have a special kind of savings
account that offers a higher interest rate in exchange for a high
minimum balance. If the remaining properties of such an
account are the same as those of other savings account, it might
be desirable to specialize the class SavingsAccount to produce
a class HighBalanceSavingsAccount.

D.We have already discussed the meaning and mechanics of inheritance
in this course. Our focus now will be on using inheritance as part of
the design process. When do we use it, and how?

1. Inheritance can be a very powerful and useful tool, saving a great
deal of redundant effort.

2. Unfortunately, inheritance can be - and often is - misused. So we will
want to consider both how to use inheritance and how not to use it.

3. A cardinal rule for using inheritance well is the rule of substitution.  
 

ASK  
 

If a class B inherits from a class A, then it must be legitimate to use
a B anywhere an A is expected. That is, it must be legitimately
possible to say “a B isa A”. 

�19

E. Actually, there are a variety of reasons for using inheritance in the
design of a software system - including some not so good ones! One
writer, Bertrand Meyer, has written a classic article in which he
identified twelve! Some of the uses identified in Meyer’s article are
fairly sophisticated. I will draw on his work here, but in simplified
form. Broadly speaking, Meyer classifies places where inheritance can
be used as:

1. Model inheritance - when the inheritance structure in the software
mirrors a hierarchical classification structure in the reality being
modeled by the software.

a) One key feature of human knowledge is that many fields of
learning have classification systems:

(1)The taxonomic system of biology

(2)The Dewey Decimal and Library of Congress systems used
in libraries.

(3)Other examples?  
 

ASK

b) When the reality we are working with has such a natural hierarchy,
we may want to reflect that hierarchy in our software. However,
Meyer warns about what he calls “taxomania” - the tendency to go
overboard with classification hierarchies in software. In particular,
there is a danger of creating too many levels in a hierarchy, without
enough distinctions between classes at a level.

c) In general, we want to reflect a natural hierarchy in our software
if the different objects we are working with fall into classes that
have enough significant differences in attributes and behavior to
make classification worthwhile.  
 
EXAMPLE: In the library problem, the items the library checks

�20

out can be categorized as book and DVD. These probably have
enough distinctions to warrant two classes inheriting from a
common “Item” base class, because the information we need to
store about each is different, and their behaviors are a bit
different

(1)Books: store call number, title, author. When checked out, a
book can be renewed.

(2)DVD: store call number, description, lead actor. Cannot be
renewed.

2. A second broad type of inheritance is what Meyer calls software
inheritance. Here, the inheritance structure reflects a hierarchy that
does not exist in the reality being modeled, but is useful
nonetheless in the software.

a) Actually, as it turns out, what Meyer calls software inheritance
shows up in UML models in two places - here, and under
realization. We’ll discuss the latter case later.

b) One common motivation for this sort of inheritance is to facilitate
polymorphism. Suppose we want to create a collection class whose
elements are to be various sorts of objects - e.g. perhaps a home
inventory that lists the different items found in our home (useful
information in case of a fire or theft.) In order to place these
different items in the same polymorphic container, they would need
to all derive from a common base class, which is the class of things
the collection actually stores. (E.g. in this case, we might create a
class HomeAsset and make things like furniture, books, artwork,
electronic equipment etc. inherit from it.)  
 
NOTE: In this case, the common base class will most likely be
abstract.  
 
EXAMPLE: The Transaction class hierarchy in the ATM system

�21

can be regarded as an example of this. The class Session needs to
be able to refer polymorphically to different types of Transaction,
which are made subclasses of a common abstract base class.

c) Another motivation for using software inheritance is to reuse
work already done. When we are designing a new class, it is
worth asking the question “is there any already existing class
that does most of what this class needs to do, which I can
extend?”

(1)However, we need to proceed cautiously when we do this,
because this kind of inheritance can easily be abused. When
extending an existing class to create a new class, we should
ask questions like:

(a)Is the law of substitution satisfied?  
 
If the law of substitution is not satisfied, then we are
almost certainly abusing inheritance.

(b)Are we mostly adding new attributes and methods to the
existing class, or changing existing methods to do
something entirely different? In the latter case, we are
likely abusing inheritance - extension means “adding to”
an existing set of capabilities.

(c)Are all (or at least most) of the existing methods of the
base class relevant to the new class? If not, it is again
likely that we are abusing inheritance.

(2)Note that, in cases like this, we generally do not have to
create the base class - instead, we use an existing class to
help create a new one.

(a)This is most likely to happen in cases where the base class
has been designed from the beginning to facilitate extension.

�22

(I.e. we usually consider extending classes whose initial
designer created them with the intention that they be
extended. Frameworks are often designed this way)

(b)A related idea is that, where appropriate, we should try to
design our classes in such a way as to facilitate later
extension in other applications. This may mean making a
class more general than in needs to be for a specific
application, in order to facilitate later reuse.

3. A third broad type of inheritance Meyer identifies is called variation
inheritance. Here, a class B inherits from a class A because it
represents some sort of variation of A. Meyer describes this sort of
inheritance this way: “Variation inheritance is applicable when an
existing class A, describing a certain abstraction, is already useful by
itself, but you discover the need to represent a similar though not
identical abstraction, which essentially has the same features, but with
different signatures or implementations.” (p. 829)  
 

We will not discuss this type of inheritance further; its applications are
a bit more sophisticated than what we’re dealing with here.

F. A danger particularly with both software inheritance and variation
inheritance (but less so with model inheritance) is letting apparent
convenience lead to misuse of inheritance. For example, Meyer cites a
well-known software engineering text that develops the following
scenario, using multiple inheritance:  
 
 

�23

�  
 
Clearly, having CarOwner inherit from Person makes sense - a car
owner is a person - but making CarOwner inherit from Car is another
story! The justification is that Car has attributes like registration
number and excise taxes due that legitimately apply to a CarOwner as
well - but we don’t want to saddle a CarOwner with having to have a
carburetor, four tires, and brakes!

1. This example, and others like it, typically fail the fundamental law
of substitution test. A CarOwner simply cannot be substituted for a
car. (Try spending some time in a car wash!)

2. The mistake that is often made is confusing the “has a” relationship
(association) with the “isa” relationship (inheritance). A correct
way to represent the structure of the problem would be to use
inheritance in one case, and association in the other:  
 

CarOwner

Person Car

�24

�  
 
(By the way, note that doing it this way lets us allow for the
possibility that an owner might have several cars, and that a car
might have joint owners.)

G.In Java, inheritance is specified by using the keyword extends.

1. The class being extended may be either abstract or concrete.

2. As you know, Java allows a class to only extend one other class -
i.e. it does not support multiple inheritance - something which
many OO languages do support - but which introduces some
interesting complexities we won’t get into now.

CarOwner

Person Car

1..*

1..*

�25

V. Realization

A.The next sort of relationship between classes we want to consider is
called realization in UML.

1. In many ways, it is similar to inheritance - in fact, in some
languages this relationship is represented the same way as ordinary
inheritance.

2. Its uses a notation similar to that for generalization, except using a
dashed, rather than solid line.

B. In ordinary inheritance, if B inherits from A, then B inherits both A’s
interface (specification) and A’s implementation. Realization (or what
is sometimes called interface inheritance) occurs when we want to
specify that a class must provide certain behaviors, without specifying
how these behaviors are provided.  
 
There are a couple of clear examples of this we will see later in the
Java libraries.

1. The ActionListener interface used with Buttons and MenuItems
specifies that an ActionListener object must have a method with
signature actionPerformed(ActionEvent), which is called when the
Button is clicked or the MenuItem is chosen. However, different
ActionListeners may do very different things.

2. In the Collections facility we will consider shortly, List, Map, and
Set are interfaces, which can be implemented in a variety of
different ways. (In fact, each is implemented in at least two
different ways in the Java library, and other implementations could
be created by a user.)

C. The standard Java mechanism for realization is to have a class declare
that it implements an interface. (Thus, both the realizing class and the
interface it realizes are declared in a special way.)  

�26

1. Java actually provides another mechanisms that can be used for
specifying an inheritable interface: an abstract class. However,
when the realization relationship is intended, implementing an
interface is the appropriate facility to use.

2. Sometimes, in Java, we will use the “implementing an interface”
mechanism for inheritance as well as realization. This may be
needed because Java does not support multiple inheritance. If we
need multiple inheritance to model a particular reality, and one of
the classes being inherited is there just for behavior, then
implementing it as an interface may let us do what we need to do.  
 

NOTE: In this case, the UML relationship we are modeling is
actually generalization, not realization.

VI.Dependency

A.The final kind of relationship between classes we will consider is
dependency.

1. Dependency is denoted in UML by a dashed line with an arrow
head from the dependent class to the class it depends upon.

2. We say that class A depends on class B if a change to class B’s
interface could necessitate a change to A. (I.e. A’s implementation
depends on facilities made available by B.)

B. Dependencies are of various kinds. We will consider only one: usage
dependencies - where the dependent class uses the class it depends
upon as part of its implementation.

C. A usage dependency relationship arises when one or more of the
following holds:

1. The dependent class has a method that takes an object of the class it
depends on as a parameter, and uses that object in some way in
implementing the method.

�27

2. The dependent class has a method that returns as its value an object
of the class it depends on.

3. The dependent class creates an object of the class it depends on, but
only uses it within one method (doesn’t keep a reference to it as an
instance variable - if it did, we would have an association.)

4. In Java, usage dependencies typically show up in the signatures of
methods - as the type of a parameter or a return value - but the
object in question is not stored as an instance variable.

D.We take note of dependencies in a UML diagram because they serve to
alert us to the fact that whenever we change a class, we need to make sure
that we don’t need to also change classes that depend upon it.

1. In particular, any time we use an object of a class A as a parameter or a
return value of a method of class B, we generally create a dependency
from B to A which we should take note of. (No dependency is created if
the value is just “passed through” to some other class.)

2. Of course, any time we have an association between objects, we
have a dependency between their classes - but we don’t take
separate note of this - association implies dependency.

3. Likewise, any time we have a generalization or realization
relationship, we also have an implicit dependency, which again
does not need to be noted separately.

4. We only take note of a dependency when it is present and the
classes seem otherwise unrelated to each other.

E. GO OVER EXAMPLES ON CLASS DIAGRAM HANDOUT

VII. Do college class diagram exercise in teams of 4

VIII.Do Exercises related to choice of collection types to map UML

�28

